Structural disorder in metallic glass-forming liquids

نویسندگان

  • Shao-Peng Pan
  • Shi-Dong Feng
  • Li-Min Wang
  • Jun-Wei Qiao
  • Xiao-Feng Niu
  • Bang-Shao Dong
  • Wei-Min Wang
  • Jing-Yu Qin
چکیده

We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Similarities and Differences between the Glass Forming Mechanism in Polymers and Metallic Liquids

Survey of categorization of glass forming mechanisms in liquids based on the known principles reported in the literature is given. The metallic glass-forming liquids can be divided into two types – strong (with high glass forming ability) and fragile (with low glass forming ability). While the bulk amorphous alloys formed from strong liquids do not exhibit sensitivity to low temperature relaxat...

متن کامل

Bond Strength—Coordination Number Fluctuation Model of Viscosity: An Alternative Model for the Vogel-Fulcher-Tammann Equation and an Application to Bulk Metallic Glass Forming Liquids

The Vogel-Fulcher-Tammann (VFT) equation has been used extensively in the analysis of the experimental data of temperature dependence of the viscosity or of the relaxation time in various types of supercooled liquids including metallic glass forming materials. In this article, it is shown that our model of viscosity, the Bond Strength-Coordination Number Fluctuation (BSCNF) model, can be used a...

متن کامل

Time-Temperature Superposition of Structural Relaxation in a Viscous Metallic Liquid

Bulk metallic glass-forming Pd40Ni10Cu30P20 has been investigated in its equilibrium liquid by quasielastic neutron scattering. The quasielastic signal exhibits a structural relaxation as known from nonmetallic viscous liquids. Even well above the melting point, the structural relaxation is nonexponential and obeys a universal time-temperature superposition. From the mean relaxation times avera...

متن کامل

Analysis of Cooperativity in Metallic Glass Forming Liquids

The relation between fragility and cooperativity of atomic motion in bulk metallic glass forming liquids is studied based on the bond strength-coordination number fluctuation model. The model describes the temperature dependence of the viscosity in terms of the mean values of the bond strength, coordination number and their fluctuations of the structural units that form the melt. According to t...

متن کامل

Structural origin of fractional Stokes-Einstein relation in glass-forming liquids

In many glass-forming liquids, fractional Stokes-Einstein relation (SER) is observed above the glass transition temperature. However, the origin of such phenomenon remains elusive. Using molecular dynamics simulations, we investigate the break- down of SER and the onset of fractional SER in a model of metallic glass-forming liquid. We find that SER breaks down when the size of the largest clust...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016